Validation of a spatial–temporal soil water movement and plant water uptake model
نویسنده
چکیده
Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.
منابع مشابه
Spatio-temporal variation of wheat and silage maize water requirement using CGMS model
The Crop Growth Monitoring System (CGMS) has been applied for spatial biophysical resource analysis of Borkhar & Meymeh district in Esfahan province, Iran. The potentially suitable area for agriculture in the district has been divided into 128 homogeneous land units in terms of soil (physical characteristics), weather and administrative unit. Crop parameters required in the WOFOST simulatio...
متن کاملModification of a maize simulation model under different water, nitrogen and salinity levels
Irrigation, salinity and nitrogen (N) are the three major limiting environmental factors inmaize yield potentials especially in arid and semi-arid regions. An integrated water and N MaizeSimulation Model (MSM) was modified for salinity conditions using 2009-2010 fieldexperiments data in southwest of Iran. Irrigation levels were: I1=1.0ETc+0.25ETc as normalleaching amount, I2=0.75I1 and I3=0.5I1...
متن کاملتخمین
Temporal and spatial distribution of water components in watersheds, estimation of water quality, and uncertaintiesassociated with these estimations are important issues in freshwater studies. In this study, Soil and Water AssessmentTool (SWAT) model was used to estimate components of freshwater availability: blue water (surface runoff plus deepaquifer recharge), green water flow (actual evapot...
متن کاملModification of transient state analytical model under different saline groundwater depths, irrigation water salinities and deficit irrigation for quinoa
Salinization of soil is primarily caused by capillary rise from saline shallow groundwater orapplication of saline irrigation water. In this investigation, the transient state analytical modelwas modified to predict water uptake from saline shallow groundwater, actual cropevapotranspiration, soil water content, dry matter, seed yield and soil salinity under differentsaline groundwater depths, i...
متن کاملModel-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils.
Due in part to recent progress in root genetics and genomics, increasing attention is being devoted to root system architecture (RSA) for the improvement of drought tolerance. The focus is generally set on deep roots, expected to improve access to soil water resources during water deficit episodes. Surprisingly, our quantitative understanding of the role of RSA in the uptake of soil water remai...
متن کامل